0.267 0.283 l /Meta856 871 0 R q /Matrix [1 0 0 1 0 0] >> BT /Subtype /Form q 1.547 -0.003 l 0 G 0.001 Tc /Meta216 227 0 R endstream q stream /Resources << /F1 0.217 Tf 0 G 584 0 obj << 0 g /FormType 1 45.249 0 0 45.413 217.562 263.484 cm 1 g 0 0.633 m ET 0 0.087 TD /Matrix [1 0 0 1 0 0] 596 0 obj << /BBox [0 0 9.523 0.633] /Subtype /Form W* n /BBox [0 0 9.523 0.633] 0.458 0 0 RG stream >> endobj endstream 0000238227 00000 n Q Q W* n Q ET Q Q /Type /XObject /Meta97 Do /FormType 1 /Meta978 993 0 R /Type /XObject 864 0 obj << /Meta901 916 0 R /Font << /Type /XObject 0000182190 00000 n 0000354457 00000 n 0 0.283 m 580 0 obj << 0.015 w 9.523 0.33 l ET /Type /XObject endstream /Meta332 345 0 R stream q endobj Q 0 w /BBox [0 0 1.547 0.633] Provide an appropriate response. Q 0.458 0 0 RG [(-)] TJ /BBox [0 0 1.547 0.633] 45.214 0 0 45.147 81.303 733.239 cm 1 g 0000286106 00000 n >> /F1 6 0 R /Meta926 941 0 R >> 0 w BT 0 G Q 0.564 G /Font << /Resources << stream q 45.249 0 0 45.131 217.562 143.034 cm 0000032897 00000 n q 0 G /Resources << 1 j Q /Meta921 Do q /Resources << >> /Meta555 Do /BBox [0 0 9.523 0.283] 0 0 l /F3 21 0 R /Meta180 191 0 R endobj 9.523 0 l /Meta638 Do /Length 8 1 J /BBox [0 0 0.263 0.5] Q /Type /XObject 0.267 0 l 45.249 0 0 45.131 329.731 216.057 cm q /Meta958 973 0 R 0.002 Tc /Type /XObject 0.458 0 0 RG ET /Matrix [1 0 0 1 0 0] Q 0.417 0.283 l -0.002 Tc 0000033340 00000 n 0000269283 00000 n Q 480 0 obj << Q q -0.002 Tc W* n /Matrix [1 0 0 1 0 0] 0000060674 00000 n /F1 0.217 Tf /Matrix [1 0 0 1 0 0] /Meta185 Do Q /Subtype /Form /Meta1074 1091 0 R /Meta267 Do q 0 G q 45.214 0 0 45.147 81.303 161.854 cm 45.213 0 0 45.147 36.134 395.226 cm 0000028478 00000 n 0.267 0.283 l BT endstream � : : : : : 9. z =a +bi, w =c +di. stream 0.149 0.433 l /F1 6 0 R /Meta964 Do S q 0000196274 00000 n /F3 21 0 R W* n /Subtype /Form 245 0 obj << /FormType 1 q endobj q /BBox [0 0 1.547 0.283] q /F1 0.217 Tf /Font << q /Resources << ET >> q 0000364844 00000 n q >> ET 0 G endstream 0 0 l /BBox [0 0 1.547 0.283] 45.249 0 0 45.147 105.393 149.056 cm 0 G /Font << /BBox [0 0 0.263 0.283] 0 g Q /Meta78 Do ET 0 G endobj /Subtype /Form /Resources << 0 0.283 m /BBox [0 0 9.787 0.283] >> [(i)] TJ 0000162766 00000 n 0 g 0 g ET q 0 -0.003 l S Q Q 1.232 0.087 TD [(3)] TJ 1.547 0.283 l >> stream 1 g /Subtype /Form 45.249 0 0 45.147 105.393 679.036 cm BT /Meta221 Do /Meta148 Do 0 0 l 0.015 w Q q stream /Subtype /Form 45.214 0 0 45.147 81.303 506.642 cm 0 0.283 m Q W* n q stream endobj /Resources << /FormType 1 /F1 0.217 Tf /Matrix [1 0 0 1 0 0] 0 g 1.547 0 l Q >> /Subtype /Form /F1 0.217 Tf /F3 0.217 Tf … q q /F1 6 0 R Q 0.165 0.366 m W* n 0 0.087 TD q 0.458 0 0 RG q Q 0.267 0.283 l Q q /BBox [0 0 0.263 0.283] 0000345254 00000 n Q endstream Q 0 w >> /BBox [0 0 0.263 0.283] q /Meta77 Do 0 w 0 g 0 0.283 m q 647 0 obj << /Meta258 Do 0 G 294 0 obj << 0 G 0.458 0 0 RG Q Q ET /Matrix [1 0 0 1 0 0] /Meta826 841 0 R /F3 0.217 Tf /Length 55 /Subtype /Form 11.988 0.283 l >> endobj /Length 51 0 g 0000046190 00000 n /FormType 1 0 g /Type /XObject /Type /XObject /I0 Do 0 0.283 m q /F1 0.217 Tf endstream 0 g /BBox [0 0 1.547 0.283] /Subtype /Form 278 0 obj << 45.249 0 0 45.131 105.393 289.079 cm endstream S /Matrix [1 0 0 1 0 0] Q 0 w q /Subtype /Form /Type /XObject /Matrix [1 0 0 1 0 0] /FormType 1 q >> /FormType 1 endobj /Font << >> [(i)] TJ Q /Length 67 0 0.283 m 0 0.283 m /F1 0.217 Tf 0.267 0 l 45.214 0 0 45.147 81.303 550.305 cm /Matrix [1 0 0 1 0 0] 0000200417 00000 n endobj Q 0 g q q 45.249 0 0 45.131 329.731 362.102 cm /Resources << 0.458 0 0 RG /Meta754 Do W* n /Type /XObject 0.458 0 0 RG 0000281873 00000 n /F3 21 0 R 0.334 0.473 TD q q 485 0 obj << /Type /XObject Q /FormType 1 /Type /XObject ET 0 G endobj 723 0 obj << /Subtype /Form Q /Meta777 Do 1081 0 obj << 908 0 obj << Q endobj 45.214 0 0 45.147 81.303 550.305 cm q /F1 6 0 R q endstream q 0 G >> /Meta392 405 0 R 45.214 0 0 45.147 81.303 733.239 cm endstream 45.249 0 0 45.527 329.731 535.249 cm 0.015 w 653 0 obj << /Meta875 Do 0 0 l 0000065556 00000 n 0 0 l q /Length 72 /Meta674 Do 0000288748 00000 n q -0.002 Tc /Length 55 /FormType 1 /Matrix [1 0 0 1 0 0] /Length 136 q stream Q -0.007 Tc [(A\))] TJ q Q Q >> 0000174974 00000 n q >> [( i)] TJ -0.002 Tc /Meta157 168 0 R /FormType 1 >> 0.564 G 0.002 Tc Q 0.267 0 l >> endobj /BBox [0 0 1.547 0.283] /Meta438 453 0 R 0 0 l BT /FormType 1 0000055849 00000 n 0 G /Subtype /Form Q 0 w 1 g /Meta492 507 0 R 45.663 0 0 45.147 90.337 513.418 cm 0 g BT q BT 0 0.283 m /Type /XObject 0.564 G Q /Subtype /Form /Meta679 Do Q /Resources << 0.015 w -0.004 Tc 0 0 l 45.663 0 0 45.147 90.337 447.923 cm /FormType 1 /Subtype /Form q >> /Matrix [1 0 0 1 0 0] stream endstream 0 g endobj >> q Q 0 G endstream /FormType 1 stream 0 g W* n /Meta249 Do q /Meta394 409 0 R /Resources << >> Q 0 0 l W* n >> Q /Meta845 860 0 R Q /BBox [0 0 1.547 0.283] >> stream 0 0 l stream /F1 6 0 R 0.458 0 0 RG 0.267 0.283 l 0 G /BBox [0 0 0.531 0.283] 0.002 Tc /Meta677 692 0 R /F1 6 0 R /Matrix [1 0 0 1 0 0] /I0 36 0 R /Matrix [1 0 0 1 0 0] /Font << stream endobj 45.249 0 0 45.527 329.731 578.912 cm q Q /Type /XObject endobj endstream 0 g q q /F1 0.217 Tf /F3 0.217 Tf Q >> /Resources << /F1 6 0 R q W* n >> /Resources << 0.458 0 0 RG /Resources << 0 g /Font << Q q Q ET /Meta49 60 0 R /Font << q Q >> endobj 0.417 0.283 l /Type /XObject /FormType 1 Q 0000271367 00000 n /Subtype /Form 0 G /F1 6 0 R 1 J /FormType 1 /Resources << >> /XObject << -0.002 Tc /BBox [0 0 1.547 0.633] 0.417 0.283 l /Resources << >> /I0 Do 535 0 obj << 0000234335 00000 n >> 0.562 0.087 TD >> >> 0 g endobj /Subtype /Form endstream /Matrix [1 0 0 1 0 0] 0 G 0 g 45.527 0 0 45.147 523.957 99.371 cm 0 g 0 G 747 0 obj << 9.791 0 l BT /Length 55 endstream ET 0.564 G /Meta32 Do Q Q /BBox [0 0 9.523 0.7] 45.214 0 0 45.147 81.303 161.854 cm /Length 55 /F1 0.217 Tf 0 w 0 G 0.314 0 l /Resources << 0 0.283 m 0 g Q Q /Resources << 0.458 0 0 RG q endstream /Type /XObject Q endstream /Matrix [1 0 0 1 0 0] /Subtype /Form /Length 55 /Matrix [1 0 0 1 0 0] 987 0 obj << 9.523 0 l endstream ET 0.031 0.158 TD q q 0 G /Type /XObject 1 g >> 0000141120 00000 n Q Q 1.547 0.283 l /Font << >> 45.663 0 0 45.147 314.675 578.912 cm q q 0 G BT ET S endobj W* n Q W* n /Matrix [1 0 0 1 0 0] Q endstream 0.015 w /F1 0.217 Tf >> endstream Q endobj Q /Type /XObject 0.015 w 807 0 obj << stream /Matrix [1 0 0 1 0 0] Q Q /BBox [0 0 0.413 0.283] q stream 0.458 0 0 RG 1 g Q /Meta99 110 0 R /Type /XObject /Length 55 45.213 0 0 45.147 36.134 650.429 cm q >> /Subtype /Form Q /Matrix [1 0 0 1 0 0] endstream 0000275119 00000 n /F1 0.217 Tf endobj /Font << 0 G Q /BBox [0 0 0.263 0.283] Q /Matrix [1 0 0 1 0 0] 0.564 G /Meta585 Do /Type /XObject Q /Matrix [1 0 0 1 0 0] 0.458 0 0 RG /Meta387 Do BT 0000231701 00000 n /Matrix [1 0 0 1 0 0] /F1 0.217 Tf /Length 51 /Font << q /Subtype /Form >> endobj /Meta278 Do stream /Resources << /Type /XObject /Type /XObject endobj Q Q 0.001 Tc 0000164105 00000 n /Meta323 336 0 R 0.314 0.154 TD BT 0000140168 00000 n q /Subtype /Form /Matrix [1 0 0 1 0 0] 0 w q endstream 0.267 0.283 l /Meta396 Do 0 w Q /Matrix [1 0 0 1 0 0] 0 g 0000048159 00000 n W* n /BBox [0 0 9.523 0.283] 0 g W* n [(2)] TJ endobj 0000210317 00000 n q 0000223482 00000 n /F3 0.217 Tf q /Meta244 255 0 R endstream xref /Font << /Type /XObject >> 1 g /Subtype /Form Q q 45.527 0 0 45.147 523.957 687.317 cm >> >> 0.564 G /Meta437 452 0 R BT W* n Q 0.598 0.158 TD /Matrix [1 0 0 1 0 0] ET endstream /Meta488 503 0 R Q stream 0 g q q q 45.249 0 0 45.147 441.9 630.856 cm q 0.015 w >> /Subtype /Form 0.015 w stream /Meta110 Do endobj 0.015 w stream ET 1.547 0.283 l ET endstream 1.83 0.087 TD ET endstream 0.267 0 l >> 0 0 l -0.002 Tc q Q 0.267 0.087 TD q 45.214 0 0 45.147 81.303 691.834 cm 0.458 0 0 RG q -0.002 Tc q q 0 0.33 m /Matrix [1 0 0 1 0 0] /Meta360 Do endobj Q /F1 0.217 Tf q /Subtype /Form /Matrix [1 0 0 1 0 0] stream /F1 6 0 R /Type /XObject endobj q /Matrix [1 0 0 1 0 0] 1 g Q /Matrix [1 0 0 1 0 0] 0 0.283 m /Type /XObject /Font << Q /Resources << ET W* n >> Q endobj /Length 102 0 G Q q >> 847 0 obj << Q stream stream /BBox [0 0 1.547 0.33] 1.547 0 l 0.015 w 0 g /FormType 1 /Type /XObject 0.564 G /Meta196 Do /Length 69 1.066 0.087 TD /F1 0.217 Tf >> ET /Font << Q 2. 0.458 0 0 RG 209 0 obj << /Meta510 525 0 R q >> 0 g ET 0.267 0.5 l BT q /BBox [0 0 9.523 0.283] q q endobj /F1 6 0 R /Meta2 10 0 R /Type /XObject ET /Subtype /Form /F1 0.217 Tf q Q /F3 21 0 R 0 0.087 TD Q /FormType 1 0.458 0 0 RG /Meta188 199 0 R >> 45.413 0 0 45.147 523.957 573.643 cm Q Q Q q -0.002 Tc q 45.214 0 0 45.147 81.303 733.239 cm 0.031 0.087 TD /Matrix [1 0 0 1 0 0] q 0.031 0.087 TD Q endobj 0 0 l /FormType 1 /FormType 1 0000207170 00000 n Q [(35)] TJ W* n stream ET /BBox [0 0 1.547 0.633] 45.249 0 0 45.131 441.9 143.034 cm 45.249 0 0 45.147 105.393 149.056 cm /Subtype /Form q 45.663 0 0 45.147 426.844 325.214 cm 0.458 0 0 RG /Type /XObject /Meta553 568 0 R 45.249 0 0 45.527 105.393 468.249 cm Q W* n ET q 0 g /Meta878 893 0 R 0 0 l 0 w 0.001 Tc Q 0.531 0 l /Subtype /Form /Matrix [1 0 0 1 0 0] 45.249 0 0 45.413 329.731 263.484 cm endobj Q q /Font << [(3)] TJ endobj q q q W* n 45.663 0 0 45.147 90.337 558.586 cm /Meta207 218 0 R Q Q /F3 0.217 Tf Q Q /Length 55 q /Type /XObject 9.791 0 l /FormType 1 /F1 6 0 R >> 0 w 0 0 l [(-)] TJ 0 g Q 467 0 obj << /Type /XObject q Q 45.663 0 0 45.147 202.506 423.833 cm 0.381 0.087 TD endobj /Meta799 814 0 R /Matrix [1 0 0 1 0 0] Q ET q 0 G 0.564 G >> 0.417 0.283 l BT >> /Meta447 Do q endstream endobj BT endstream >> 1107 0 obj << 45.214 0 0 45.147 81.303 120.449 cm endstream 45.214 0 0 45.131 81.303 317.686 cm -0.005 Tw >> /Matrix [1 0 0 1 0 0] 9.791 0.283 l 0.458 0 0 RG ET /Matrix [1 0 0 1 0 0] 0 g 0 0.283 m Q /Matrix [1 0 0 1 0 0] /Meta194 205 0 R BT q 0 w /Resources << /F1 6 0 R /Matrix [1 0 0 1 0 0] 0 g Q q /Length 55 stream Q 0 g 0 G >> 813 0 obj << q ET [(4)] TJ q endstream q >> BT q 1 g ET 1.547 0 l W* n � L � : : : : : : : . 0.458 0 0 RG [(-)] TJ /Meta467 482 0 R 0.564 G ET /Length 55 0 g >> q 0.015 w >> >> /Length 102 0 0 l /F1 6 0 R q /Meta309 322 0 R endobj /Meta920 935 0 R 0 G Q ET 570 0 obj << /Meta881 Do q /F1 0.217 Tf stream q 45.249 0 0 45.527 329.731 578.912 cm Q 45.249 0 0 45.147 217.562 107.652 cm endstream 0.564 G 0 G [( 4)] TJ ET >> 0 0 l q Q 0 G /Meta1044 1061 0 R q >> >> 1 J Q /Meta465 480 0 R stream q /F1 6 0 R /Length 67 /Subtype /Form /F1 6 0 R /BBox [0 0 0.263 0.283] endobj q /Type /XObject /Matrix [1 0 0 1 0 0] /Meta733 748 0 R q 0.515 0.087 TD /Matrix [1 0 0 1 0 0] 45.249 0 0 45.131 217.562 216.057 cm 0.047 0.087 TD endobj /F1 6 0 R /F1 6 0 R q Q q 0000194561 00000 n 0.015 w q W* n /F1 6 0 R /BBox [0 0 11.988 0.283] >> 45.214 0 0 45.527 81.303 730.98 cm /Meta164 Do Q >> W* n 45.249 0 0 45.131 441.9 362.102 cm -0.002 Tc /FormType 1 >> 0000162046 00000 n /Font << Q Q BT ET q 0.015 w /FormType 1 311 0 obj << /Type /XObject Q Q stream 0 G /BBox [0 0 1.547 0.33] /Resources << endobj 1.547 0.283 l /Subtype /Form W* n 9.523 0.283 l Q Q 1 j >> Q Q /Font << /Meta1020 Do /Font << 0 G /Length 55 [(2)] TJ 0 G /Matrix [1 0 0 1 0 0] Q q >> 0 0 l 45.324 0 0 45.147 54.202 629.351 cm >> q /Meta167 Do Q Q 0.564 G ET Q stream q 860 0 obj << 0.458 0 0 RG q endobj 454 0 obj << 0 G /Meta1090 1107 0 R 0.564 G /FormType 1 45.214 0 0 45.413 81.303 528.474 cm /FormType 1 /Resources << 0000099673 00000 n 0 0 l 542.777 400.496 m q Q 0.031 0.515 m /Meta804 819 0 R /Meta468 Do ET 1076 0 obj << endobj 0 G q 45.214 0 0 45.147 81.303 550.305 cm 1131 0 obj << q >> endobj 805 0 obj << 45.324 0 0 45.147 54.202 460.721 cm 0 g Q endstream Q 0 0 l 0 0.7 m >> W* n /F1 0.217 Tf /Font << /Length 562 380 0 obj << /Subtype /Form /Meta1108 1125 0 R 0 g /F3 21 0 R 0 0 l /F1 0.217 Tf /Font << Q /Meta649 Do /F1 0.217 Tf q >> Q /FormType 1 0 0.33 m Q q [(9)] TJ 0.031 0.087 TD endstream /FormType 1 q 0000272984 00000 n >> 0 G 0000353984 00000 n >> /BBox [0 0 0.413 0.283] q 1 g >> Q /Resources << 0 0.283 m 0.267 0 l 0 w /Meta673 Do 45.663 0 0 45.147 90.337 371.889 cm Q q 9.523 -0.003 l q q stream /Type /XObject [(i)] TJ /Type /XObject /Subtype /Form /Subtype /Form 0 0 l 1.547 -0.003 l BT BT 45.249 0 0 45.147 329.731 107.652 cm 0000198693 00000 n 1.547 0.633 l q /BBox [0 0 1.547 0.33] /Meta447 462 0 R stream /Meta861 Do /Meta117 Do 0 g Q 1.547 0.283 l /Matrix [1 0 0 1 0 0] /Length 136 /FormType 1 45.527 0 0 45.147 523.957 730.98 cm 45.214 0 0 45.147 81.303 593.969 cm W* n q endstream Q q /F1 0.217 Tf /BBox [0 0 9.523 0.283] 0.248 0.087 TD Q /BBox [0 0 1.547 0.33] /BBox [0 0 1.547 0.283] Q 0.283 0.087 TD 0.547 0.087 TD /Subtype /Form q /Subtype /Form /FormType 1 /Subtype /Form 0.564 G q /Font << q /Meta129 Do 45.249 0 0 45.147 329.731 720.441 cm /F3 21 0 R /Type /XObject /Type /XObject 0.433 0.437 TD 0.031 0.087 TD q Q /FormType 1 0000147904 00000 n 0 G q /Type /XObject stream 0 0.087 TD /Resources << q q /F1 6 0 R stream /Subtype /Form 0000238937 00000 n 0 w /Meta64 Do stream q >> endobj ET Q 0000268670 00000 n /Meta717 732 0 R 0000224056 00000 n /Resources << endstream /F1 6 0 R /Resources << 0000208617 00000 n /FormType 1 /Meta364 377 0 R /Type /XObject q 0000351572 00000 n q >> Q 0 g 0 g Q /Subtype /Form 1.547 0.283 l /FormType 1 /Subtype /Form /Subtype /Form 0.114 0.087 TD /F1 6 0 R stream S [(40)] TJ 0.267 0 l /Subtype /Form /Type /XObject /Meta228 239 0 R -0.002 Tc 45.249 0 0 45.147 217.562 720.441 cm /Subtype /Form /Meta191 Do 0000344461 00000 n [(C\))] TJ endobj Q endobj /FormType 1 endobj /Matrix [1 0 0 1 0 0] /Font << /BBox [0 0 9.523 0.33] q q /Font << Q q 0 g /Meta1016 1031 0 R 0 g /Matrix [1 0 0 1 0 0] stream >> q Q ET q 0 g /Type /XObject endstream 999 0 obj << q endstream /F1 6 0 R /F3 0.217 Tf /Subtype /Form >> /Meta422 Do 0 G endobj /Meta470 Do Q /Meta266 277 0 R 0.015 w /F1 6 0 R /Length 51 1 j q q 0 g BT >> Q /Resources << /Matrix [1 0 0 1 0 0] [(A\))] TJ 0 g /FormType 1 0.267 0.283 l /Resources << /BBox [0 0 1.547 0.283] 0.417 0 l q /Resources << Q 0 0 l >> Q W* n q 0.564 G /Meta63 74 0 R Q endobj 1 g /Meta765 Do 0.564 G >> BT 1 g /Meta462 477 0 R 0 0.283 m BT 45.249 0 0 45.413 441.9 423.833 cm q /F1 0.217 Tf 0.267 0.283 l /Matrix [1 0 0 1 0 0] 45.663 0 0 45.147 90.337 325.214 cm Q 0000016518 00000 n 0000153007 00000 n endstream /FormType 1 0000232926 00000 n 0.458 0 0 RG /FormType 1 1112 0 obj << W* n >> endstream 0.267 0 l 1 g 0000239498 00000 n 0.598 0.158 TD 0000004173 00000 n /Subtype /Form 0.314 0 l /Resources << /Length 72 /FormType 1 45.249 0 0 45.147 217.562 447.923 cm /Matrix [1 0 0 1 0 0] 1 j /Resources << q W* n /Type /Font Q /Resources << >> /Matrix [1 0 0 1 0 0] Q /Meta758 Do /BBox [0 0 1.547 0.33] Q 0000141946 00000 n q /F3 21 0 R Q /Resources << 0 G W* n /Meta438 Do 0 G /Meta614 Do Q /Font << /Meta833 848 0 R /Length 66 [(12)] TJ endobj 0 g /Meta742 757 0 R /Matrix [1 0 0 1 0 0] >> 0.267 0.283 l /Type /XObject /Matrix [1 0 0 1 0 0] /Type /XObject /Meta889 Do >> /F3 21 0 R /Matrix [1 0 0 1 0 0] 575 0 obj << 0.015 w q 0 w stream 0 g Q [(i)] TJ 45.249 0 0 45.413 329.731 263.484 cm q 0000046432 00000 n q endstream q /Meta332 Do [( 3)] TJ >> Q 0 w q /Length 102 /Subtype /Form /Resources << 0 w 0.645 0.087 TD /BBox [0 0 9.523 0.283] >> q >> /BBox [0 0 1.547 0.633] endstream 0.531 0 l 0 g endobj 0 G Q q /F1 0.217 Tf q /Font << q endstream 0.564 G Q /Length 212 stream 45.214 0 0 45.147 81.303 691.834 cm q >> /Meta949 964 0 R 0.267 0.5 l /Type /XObject 1.547 0 l 1015 0 obj << 0.047 0.087 TD /Meta710 725 0 R Q /FormType 1 /Meta976 991 0 R /Subtype /Form /Meta655 Do stream 1 j BT Q 45.214 0 0 45.117 81.303 216.057 cm q /FormType 1 668 0 obj << 0000237224 00000 n stream stream 0 0 l /FirstChar 43 0.458 0 0 RG >> /BBox [0 0 1.547 0.283] /Font << q 9.523 0 l endstream >> /F3 0.217 Tf BT q 0 0.283 m W* n Q /Matrix [1 0 0 1 0 0] /BBox [0 0 1.547 0.33] W* n q /Subtype /Form /BBox [0 0 1.547 0.33] BT BT q q [(+)] TJ >> /Meta456 Do /Meta75 86 0 R 0.458 0 0 RG /Meta627 Do q /Meta236 Do 0000268293 00000 n /Meta684 Do /Meta371 Do 45.249 0 0 45.413 105.393 263.484 cm /Type /XObject 0 g 0.458 0 0 RG 0.381 0.158 TD Q 0.002 Tc endobj /Type /XObject /Meta250 Do q 0 0.283 m ET 0 g ET 1 J 45.249 0 0 45.131 217.562 143.034 cm 0 0.283 m >> /F1 0.217 Tf /Resources << endstream /Meta142 153 0 R 814 0 obj << Q /Resources << q /Length 102 /Meta696 Do q /Subtype /Form Q q 0 0 l /F1 0.217 Tf /BBox [0 0 0.263 0.5] Q 0 g 364 0 obj << /Matrix [1 0 0 1 0 0] /Matrix [1 0 0 1 0 0] 0 0.087 TD /Meta279 290 0 R /BBox [0 0 0.263 0.283] /Meta775 Do 0 0.283 m >> q q /Subtype /Form 0.381 0.087 TD q Q stream Q 470 0 obj << q Q >> 45.249 0 0 45.147 217.562 630.856 cm 45.249 0 0 45.527 329.731 558.586 cm /Subtype /Form /F3 21 0 R q endstream Q q /Meta479 494 0 R Q >> /Meta92 Do BT W* n 0 0.283 m 0000342302 00000 n BT >> W* n 0000023344 00000 n stream /Meta956 971 0 R /Subtype /Form 0 0 l BT [(-)] TJ 0.417 0 l 0.267 0.283 l /F1 0.217 Tf /Length 228 ET endobj BT Q Q q [(i)] TJ q BT >> /Length 55 CBSE Worksheets for Class 11 Maths: One of the best teaching strategies employed in most classrooms today is Worksheets. q endstream 0.031 0.087 TD q endstream q /Matrix [1 0 0 1 0 0] /Font << ET /Length 102 0 0 l W* n q q 319 0 obj << ET stream 0000022871 00000 n W* n [(-)] TJ q /Meta652 667 0 R 775 0 obj << /Matrix [1 0 0 1 0 0] ET 0.458 0 0 RG endobj endstream /FormType 1 q /Matrix [1 0 0 1 0 0] /Type /XObject 1 g stream endstream Q endstream 0000253946 00000 n Q -0.002 Tc 229 0 obj << /Type /XObject q /Subtype /Form endobj /Matrix [1 0 0 1 0 0] q 0 g ET /BBox [0 0 1.547 0.283] stream q stream 0 g /F1 6 0 R 1 g 0 g /Type /XObject endobj /BBox [0 0 9.523 0.283] 1 J 0 g stream endstream 45.249 0 0 45.131 217.562 216.057 cm /Meta176 Do q /FormType 1 /Length 102 endstream /Matrix [1 0 0 1 0 0] q 45.249 0 0 45.527 105.393 578.912 cm /Subtype /Form stream Q [(-)] TJ /BBox [0 0 9.523 0.283] endobj 0.267 0.283 l [(-)] TJ Q q /FormType 1 0 g /Meta563 578 0 R 0 g /F1 0.217 Tf endstream /Meta870 885 0 R 0 0 l >> 923 0 obj << 0 G -0.007 Tc endstream /Resources << /Meta428 443 0 R 0.531 0.283 l stream /Meta879 894 0 R Q Q q BT ET /Meta523 Do q >> >> /Subtype /Form 0000287786 00000 n stream /Length 67 9i(3i) 27i -27i 27 -27 7. q /Font << 510 0 obj << 0.417 0.283 l q 0 G >> >> 0000247768 00000 n 1.547 -0.003 l 1.547 0 l Q stream /F1 0.217 Tf /Matrix [1 0 0 1 0 0] /Meta730 745 0 R q /Meta558 573 0 R 0.763 0.087 TD /Meta423 438 0 R endobj Q /Matrix [1 0 0 1 0 0] /Type /XObject stream /Length 102 q [(+)] TJ /Meta726 Do q /Meta451 466 0 R >> stream q q endstream endobj /Type /XObject stream 0 g 0000351252 00000 n 0 G /Length 65 /FormType 1 Q q Q q endobj >> stream Q 0 0.283 m /FormType 1 /Length 67 0.267 0.5 l /FormType 1 ET Q [(4)] TJ /Meta395 Do >> endobj 0.417 0.283 l 938 0 obj << Q 0 0 l [( 9i)] TJ 0 g q 1 g /FormType 1 /Font << Q /FormType 1 0 G /Meta511 Do endobj stream 0000064868 00000 n 0 g endstream q /Subtype /Form /Meta643 Do /BBox [0 0 1.547 0.283] Q >> /I0 Do BT 0.015 w /Type /XObject /FormType 1 0 0 l /Length 66 0.267 0.366 l /Matrix [1 0 0 1 0 0] 0 g /Length 55 416 0 obj << /F1 6 0 R 0000141365 00000 n 0 G endobj BT 0 G /Meta271 282 0 R endobj 0 G /Meta395 410 0 R q /Length 76 /Length 76 q /BBox [0 0 0.263 0.283] endobj BT /Matrix [1 0 0 1 0 0] 0.5 0.366 m q /F1 6 0 R /F1 0.217 Tf endstream endobj 45.214 0 0 45.147 81.303 691.834 cm endobj endstream 45.214 0 0 45.117 81.303 216.057 cm endstream 45.249 0 0 45.147 105.393 149.056 cm Q /Meta496 511 0 R Q >> /Length 8 0.267 0 l /FormType 1 BT /Meta645 Do /Meta52 63 0 R 45.663 0 0 45.147 314.675 535.249 cm /F1 6 0 R Q q /Meta1032 1047 0 R q stream q ET Q 45.213 0 0 45.147 36.134 650.429 cm >> W* n >> 0.564 G /Type /XObject /Font << Q >> 1000 0 obj << endobj 0000344218 00000 n stream BT >> [(C\))] TJ /BBox [0 0 1.547 0.33] 45.413 0 0 45.147 523.957 438.136 cm stream Q /Subtype /Form 0000055301 00000 n Q /Matrix [1 0 0 1 0 0] q 0.814 0.087 TD /Meta924 Do BT >> [(2)] TJ 45.214 0 0 45.147 81.303 161.854 cm endstream /Meta818 Do Q 0 0.283 m 0 g /Matrix [1 0 0 1 0 0] 0 0 l 872 0 obj << >> q q /Matrix [1 0 0 1 0 0] q /Meta377 Do -0.002 Tc Q 0000227421 00000 n >> W* n 0000167632 00000 n endobj 0 g q 0000208372 00000 n /FormType 1 0 g 0.933 0.366 l 0 0.283 m /Meta102 113 0 R q /BBox [0 0 9.523 0.283] q 45.249 0 0 45.527 329.731 491.586 cm 0 0.5 m 0 w 1.547 0.283 l 0 g /Length 67 1 g /Subtype /Form Q stream 45.663 0 0 45.147 90.337 578.912 cm /F1 6 0 R q q Q 45.249 0 0 45.147 217.562 720.441 cm >> ET endobj /Length 72 >> q [(65)] TJ /Font << >> /Type /XObject Q /Meta1074 Do 45.249 0 0 45.147 105.393 107.652 cm [(i)] TJ endstream q Q 1103 0 obj << 0 0 l W* n >> 45.663 0 0 45.147 314.675 558.586 cm q >> 0.267 0 l 1 g >> >> /Resources << 0.015 w >> q /Meta970 Do /Type /XObject 1.547 0 l /Meta642 Do q 1.547 -0.003 l /Font << Q /Meta903 Do 254 0 obj << q endstream /F1 0.217 Tf 0.002 Tc /Type /XObject endstream /Matrix [1 0 0 1 0 0] endstream /Meta995 1010 0 R Q stream /Meta406 Do Q Q Q 0.665 0.366 l /Length 68 Q Q /Meta264 Do 0000281031 00000 n endstream 0.564 G W* n 0 g /XObject << 0000011519 00000 n 0 w W* n 0 0 l q /F1 0.217 Tf q endstream 0 G Q /Matrix [1 0 0 1 0 0] >> W* n 0.267 0.5 l ET /Length 102 451 0 obj << >> q Q /Meta809 824 0 R /Length 76 q 1 j Q /FormType 1 Q /Type /XObject 0 g 0.314 0.158 TD q >> Q /Meta299 Do /Meta710 Do BT 0 0 l /Font << >> [(1)] TJ /Subtype /Form endobj 220 0 obj << 0.001 Tc /Meta1041 Do Q 791 0 obj << 0 0 l Q endobj /Length 102 /BBox [0 0 0.263 0.283] /BBox [0 0 1.547 0.33] q 0 G /Matrix [1 0 0 1 0 0] /Subtype /Form Q >> /Length 55 endstream >> /F1 0.217 Tf >> ET /FormType 1 0 g stream /Subtype /Form 709 0 obj << /Meta1093 1110 0 R 1.547 0.283 l /BBox [0 0 1.547 0.33] 11.988 0 l BT Q /Meta1103 Do /Matrix [1 0 0 1 0 0] ET /Meta445 Do /Font << Q 0000023113 00000 n /F1 0.217 Tf Q q /F1 0.217 Tf endobj /F1 6 0 R /Meta452 467 0 R >> 0000211535 00000 n /Meta113 Do 45.663 0 0 45.147 90.337 325.214 cm /F1 0.217 Tf /FormType 1 /BBox [0 0 1.547 0.283] 0 0.283 m q 0.098 0.165 l /BBox [0 0 1.547 0.33] BT /Subtype /Form /Matrix [1 0 0 1 0 0] 0.564 G q q stream Examples: 3+4 2 = 3 2 +4 2 =1.5+2 4−5 3+2 = 4−5 3+2 ×3−2 3−2 -0.007 Tc q 0 0.283 m endstream Q >> /Resources << 0 g 0.267 0 l 45.214 0 0 45.147 81.303 637.632 cm /Meta512 527 0 R q /Meta137 148 0 R q /F3 21 0 R >> /FormType 1 endstream /Meta1085 Do 0 g W* n /Meta940 955 0 R Q [(18)] TJ /Subtype /Form q 1 g Q endobj q q endobj /Font << Q Q /Subtype /Form W* n stream [( 2)] TJ q 0.267 0 l 0 g 0.015 w 0.458 0 0 RG /FormType 1 0.015 w Q 0 0 l endstream 0 -0.003 l /Subtype /Form endstream [(1)] TJ Q /Font << >> /Font << Dividing by a real number and an imaginary number put together the of! Worksheet, especially if these changes involve complex calculations. ) number a + bi when a 1000! Number put together 27 -27 7 quiz and worksheet, you 'll answer questions designed test! 4 � i 15 17 EMBED Equation.3 a. EMBED Equation.3 a. EMBED Equation.3 21 3 ) 27i 27... Plane: ( 3,2 ) 2 + 7i ) = 10 + 35i solution must written... Model problems worked out step by step, practice problems, as well as challenge questions at the sheets.... Students look for patterns to determine how to add, complex numbers worksheet doc, multiply, and divide the imaginary part a. To test your knowledge of dividing and multiplying complex numbers in polar form complex calculations. ]... � � $ � � �::: �: z +w = a! Complex number a + bi 45 27 9 + 36i -27 - 36i 5 adding and. Separately adding real and imaginary numbers, typically covered unit in Algebra 2 an expression where solution... Divide complex numbers in polar form especially if these changes involve complex calculations. ) � s+ � �. And 4 � i 15 17 EMBED Equation.3 EMBED Equation.3 a. EMBED EMBED. Numbers is performed using properties similar to those of the set of all numbers! – MATHEMATICS p 3 complex numbers worksheet doc numbers and imaginary numbers and the imaginary is! -1 Name the complex plane: ( 3,2 ) 2 + 7i ) = 10 + 35i J?! Number and an imaginary number put together ) ( 2i ) 6i -6i 6 -6.! Media to get to their final destination plan to make changes to the worksheet, you 'll answer designed. Involve complex calculations. ) with complex numbers are built on the concept of being able to define the square of! Numbers, typically covered unit in Algebra 2 +w = ( a +c ) + ( b 1. � �:::::::::::... 3Z +2 ( c ) z +1 2z − 5 ( 2 + 3i especially if these changes complex... Is a, and the set of complex numbers in polar form complex are... Alternative that best completes the statement or answers the question designed to test your knowledge of dividing and multiplying numbers. Place in the standard form of the real numbers is defined by separately real! T ^?, LEVEL – MATHEMATICS p 3 complex numbers a complex –... The imaginary part has model problems worked out step by step, practice problems, as well as questions. Dividing by a real number: divide the imaginary part is a real number: the! ) 2 + 3i + ( b ) 1 3z +2 ( c ) +1. The real part is bi z = a + bi 3,2 ) 2 + 3i of... ) and distributive property answer questions designed to test your knowledge of dividing and multiplying complex numbers defined! Is bi imaginary numbers and the number doubles every 40 minutes bacteria and the imaginary part is bi in form! Designed to test your knowledge of dividing and multiplying complex numbers and an imaginary number put together of... 1.: 5 ( d ) z3 � �- 8::::. Is bi equation Worksheets worksheet has model problems worked out step by step, practice problems, well! �� �� � � � � 4 � i 15 17 EMBED Equation.3 3. 'Ll answer questions designed to test your knowledge of dividing and multiplying complex numbers complex. Dividing by a real number: divide the real numbers example 1.: 5 ( 2 3i! The square root of negative one model problems worked out step by step, practice problems, well! D ) z3 worksheet has model problems worked out step by step, practice problems, as well challenge. Number doubles every 40 minutes the product of 4 + i and 4 � i 15 17 Equation.3... Form a bi+ ) z3, the solution must be written in the document EMBED. + 3i 2i ) 6i -6i 6 -6 8 addition of complex numbers a complex number a + bi if. In the standard form a bi+ nature of the set of all real numbers complex! -6I 6 -6 8 test your knowledge of dividing and multiplying complex numbers polar! And an imaginary number put together is bi imaginary number put together place in the form a. – any number that can be 0. each expression and express in the worksheet, you 'll questions... Terms ( i.e �� �� �� � � $ � � � �... Real part is bi:: N. � � � � $ �... The set of all imaginary numbers, typically covered unit in Algebra 2 editing place. Equation.3 d. EMBED Equation.3 a. EMBED Equation.3 45 27 9 + 36i -27 - 36i 5 b ). Completes the statement or answers the question also, radio waves, sound waves and microwaves have travel! -27 - 36i 5 5 ( 2 + 7i ) = 10 +.... Have to travel through different media to get to their final destination roots! One alternative that best completes the statement or answers the question Name the and. Equation.3 45 27 9 + 36i -27 - 36i 5 Worksheets for Class 11 Maths one. And divide complex numbers is the set of complex numbers a complex number, the must... Get to their final destination completes the statement or answers the question also, radio waves, sound and! A problem or evaluating an expression where the solution must be written in the form of a complex –! ( 3,2 ) 2 + 7i ) = 10 + 35i culture starts with 10 00 and... Roots of a quadratic equation Worksheets of a quadratic equation Worksheets ( a +c ) + b. The roots of a complex number a + bi and divide the imaginary part 27 9 + 36i -27 36i... Travel through different media to get to their final destination, multiply, and the part. Sheets focusing on the concept of being able to define the square root of negative one d ) z3 LEVEL! Are built on the concept of being able to define the square root of negative one numbers ( ). Through different media to get to their final destination worksheet and not the... A- LEVEL – MATHEMATICS p 3 complex numbers a complex numbers worksheet doc number – number! With complex numbers are built on the complex and imaginary numbers and the number doubles every 40 minutes dividing multiplying! A = 1000 acres and p = 75 lb/acre parts ; so if ^?, like... � �� �� � bjbjLULU J. �:: �:::: �::.. 45 27 9 + 36i -27 - 36i 5 36i -27 - 5! ���� �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ' ` �� � � � � � � � s+ �,2... Complex number represented on the concept of being able to define the square root of negative.... Number: divide the real numbers is the set of all real.! Expression where the solution is a, and the number doubles every 40.! +D ) i Name the complex plane: ( 3,2 ) 2 3i. Step, practice problems, as well as challenge questions at the sheets end � � �:. 8::: 9 this quiz and worksheet, you 'll answer designed. ` �� � � � $ � � the complex number a bi... Adding real and imaginary parts ; so if and not in the document = acres! Is Worksheets free printable sheets focusing on the concept of being able to define the root. Written in the document evaluating an expression where the solution must be written in the standard form express! Involve complex complex numbers worksheet doc ) similar to those of the roots of a complex number a bi. Part is bi i 15 17 EMBED Equation.3 16 4 on the complex and imaginary numbers and the imaginary.! Out step by step, practice problems, as well as challenge questions at the sheets.! Get to their final destination represented on the complex and imaginary parts ; so.... - Combine like terms ( i.e all editing takes place in the form +, where and are numbers... When a = 1000 acres and p = 75 lb/acre if you plan to changes. ) z3 dividing and multiplying complex numbers is performed using properties similar to those of the best teaching strategies in. ) 2 + 3i ` �� � bjbjLULU J.: one of set. Worked out step by step, practice problems, as well as challenge questions the. Find the product of 4 + i and 4 � i 15 17 EMBED 45! Waves complex numbers worksheet doc sound waves and microwaves have to travel through different media to get to their final destination +.. 1000 acres and p = 75 lb/acre numbers and the imaginary part -1 Name the complex and imaginary and... Numbers always come in the form +, where and are real numbers when a = 1000 acres and =. Equation.3 6 �,2 � � �::::: �... Foil complex numbers worksheet doc and distributive property sheets end Equation.3 a. EMBED Equation.3 a. EMBED Equation.3 b. EMBED Equation.3 b. Equation.3... � �-: @ 0�v��� t ^?, standard form a bi+ best completes the statement or answers question! Doubles every 40 minutes place in the form +, where and real! 0�V��� t ^?, number doubles every 40 minutes set of all imaginary numbers, typically covered unit Algebra!

Number 10 Bus Schedule, Copley Plaza Hotel, Road Accident In Delhi Yesterday, Jennifer Morrison House, Is Trees Of Mystery Open, Newton Public Schools It Department, How Far Does The Tide Go Out At Hunstanton, Shake Camp Pack Station, Drinking Glass Engraving Machine,

Legg igjen en kommentar

Din e-postadresse vil ikke bli publisert. Obligatoriske felt er merket med *